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Abstract

In this paper we study the performance of four map�
ping algorithms� The four algorithms include two na�
ive ones� Opportunistic Load Balancing �OLB�� and
Limited Best Assignment �LBA�� and two intelligent
greedy algorithms� an O�nm� greedy algorithm� and an
O�n�m� greedy algorithm� All of these algorithms� ex�
cept OLB� use expected run�times to assign jobs to ma�
chines� As expected run�times are rarely deterministic
in modern networked and server based systems� we
�rst use experimentation to determine some plausible
run�time distributions� Using these distributions� we
next execute simulations to determine how the map�
ping algorithms perform� Performance comparisons
show that the greedy algorithms produce schedules that�
when executed� perform better than naive algorithms�
even though the exact run�times are not available to
the schedulers� We conclude that the use of intelligent
mapping algorithms is bene�cial� even when the expec�
ted time for completion of a job is not deterministic�

� Introduction
This paper describes the experiments and simula�

tions that we executed to determine the relative per�
formance of certain mapping algorithms in di�erent
heterogeneous environments� In this paper we assume
that all jobs are independent of one another� That is�
they do not communicate or synchronize with one an�
other� This type of architecture is common in today�s
LAN�based distributed server environment�

Our goal was to determine whether using intelli�
gent mapping algorithms would be bene�cial� even if

�This research was supported by DARPA under contract
number E���� Additional support was provided by the
Naval Postgraduate School and the Institute for Joint Warfare
Analysis�

the jobs did not run for exactly the amount of time
expected� Intelligent mapping algorithms utilize the
expected run�times of each job on each di�erent ma�
chine to attempt to minimize some scalar performance
metric� For our experiments� this metric is the time at
which the last job completes� In particular� we were
concerned about whether it would still be bene�cial
to use intelligent mapping if one or several jobs run
for a substantially di�erent amount of time than ex�
pected� but are still accurately characterized statist�
ically� Because determining a perfect mapping is an
NP�complete problem� we examined the performance
of several di�erent �polynomial� heuristics� The al�
gorithms we chose are listed below�

� A naive O�n� algorithm known as Opportunistic Load
Balancing �OLB�� This algorithm simply places each
job� in order of arrival� on the next available machine�

� A simple O�nm� algorithm known as Limited Best
Assignment �LBA�� This algorithm uses the expected
run�time of each job on each machine� It assigns each
job to the machine on which it has the least expected
run�time� ignoring any other loads on the machines�
including that produced by the jobs that it has as�
signed�

This algorithm� though easily implementable in a
scheduling framework that automatically assigns jobs
to machines� is very similar to the algorithm used by
many users who remotely start their jobs by hand
at supercomputer centers without examining queue
lengths�

� Two greedy algorithms� one of order O�nm� and the
other of order O�n�m�� Both of these algorithms make
use of the expected run�time of each job on each ma�
chine as well as the expected loads on each machine�
These algorithms will be more fully described in Sec�
tion ��



The primary reasons for our study are both that
jobs rarely execute for exactly the expected run�time
and often the expected run�times are not exactly
known� In a system where each job has exclusive use
of a machine� di�erences between actual and predicted
run�times occur either because ��� all of the compute
characteristics 	�
� are not known or enumerated by
the designer of the program� or ��� because the time
to access memory and disk is stochastic and not de�
terministic� Of course� in many environments� addi�
tional non�determinism is due to other jobs running on
the machine or simultaneously using a shared network
or a shared �le server� This paper focuses on those
cases where one or more of the jobs being scheduled
have run�times that could di�er substantially from the
expected run�time� For those cases� we seek to de�
termine whether there is still an advantage to using
an algorithm that makes use of expected run�times or
whether a computationally simpler algorithm that does
not require estimating run�times� such as Opportun�
istic Load Balancing �OLB�� might not yield equival�
ently good performance�

In the next section� we describe the two greedy al�
gorithms that we used in our experiments and simu�
lations� We then describe our experiments concerning
the non�determinism of expected run�times and exam�
ine� using the derived distributions in simulations� the
performance of the intelligent algorithms� That is� we
collect run�times for various jobs on various machines�
analyze their distributions� and extrapolate these dis�
tributions for use in our simulations� We conclude the
paper with a short summary and comparison to related
work�

� The Greedy Algorithms

In addition to the simple OLB and LBA algorithms
described in the previous section� our experiments
used two greedy algorithms� We now describe those
algorithms in detail�

The �rst algorithm is an O�nm� algorithm� where n
is the number of jobs andm is the number of machines�
and the second algorithm is of order O�n�m�� Each
algorithm �rst estimates the expected run�time of each
job on each machine� assuming that if a job cannot
execute on a particular machine� the estimation will be
set to some very large number� As we describe these
algorithms we will consider these expected run�times
as elements of a ��dimensional� n by m matrix called
A� That is� A	i� j� is the expected run�time of job i on
machine j�

The O�nm� algorithm� which� like in the SmartNet
documentation 	
�� we will call Fast Greedy� considers

the jobs in the order requested� � It �rst determines
the value A��j� such that A��j � A��k � k � f���mg� It
then assigns job � to machine j� Following this� it adds
A��j to all Ai�j � i � f���ng� Then� for each remaining
job� p � f���mg� it determines the value Ap�j � such
that Ap�j � Ap�k � k � f���mg� It then assigns job p to
machine j� Following this� it adds Ap�j to all Ai�j � i �
fp� ���ng� At each step� then� it is assigning each job
to its best machine� given the previous assignments�
We note that the jobs are assigned in the order in which
they were requested�

The O�n�m� algorithm� which again borrowing
from SmartNet nomenclature we call simply Greedy�
actually computes two mappings using two di�erent
sub�algorithms and then chooses the mapping that
gives the smallest sum of the predicted run�times� min�
imized over all machines� The two sub�algorithms are
similar to the �rst greedy algorithm above� di�ering
only in the order in which they assign jobs to machines�
We �rst enumerate the steps of the �rst sub�algorithm�

�� Initialize the set fRemainingJobsg to contain all jobs�

�� � i � fRemainingJobsg� �nd Ai�j � Ai�k � k �
fMachinesg� Call such an Ai�j � Ai�mini �

�� Determine p such that Ap�minp � Ai�mini � i �
fRemainingJobsg�

	� Remove p from fRemainingJobsg� scheduling job p

on machine minp�


� Add Ap�minp to Ai�minp � i � fRemainingJobsg�

�� If fRemainingJobsg is not empty� return to step ��

The idea behind this �rst sub�algorithm is that� at
each step� we attempt to minimize the time at which
the last job� which has been thus far scheduled� �n�
ishes�

The second sub�algorithm di�ers from the �rst sub�
algorithm in that� at the third step� it �nds p such
that Ap�minp

� Ai�mini
� i � fRemainingJobsg� This

algorithm� then tries to minimize the worst case time
at each step�

� E�ect of Non�Determinism on Al�
gorithm Performance

We now examine the e�ect of non�determinism on
the performance of the greedy and LBA algorithms
that we described above� Our reason for studying this

�In describing these algorithms� we use the term order re�

quested to mean the order in which the job requests have been
placed prior to invocation of the algorithm� We also investig�
ated the performance of these algorithms if jobs are �rst sorted
before these algorithms are invoked�



is because both the LBA and the greedy algorithms use
the expected run�time to produce their mappings� One
of our major motivations for this work is to determ�
ine whether such intelligent algorithms are still useful if
the actual run�time is non�deterministic� that is� essen�
tially sampled from a distribution around the expected
run�time� In order to determine what distributions we
should sample our run�times from in our simulation�
we �rst conducted some experiments with actual pro�
grams to try to determine what types of distributions
characterize their run�times�

��� Job Run�time Distributions

We have already explained why job�machine run�
times are typically not constant� but rather vary ac�
cording to some distribution� To test the performance
of our algorithms� it is essential to draw samples of
the run�times of jobs from a particular distribution�
but �rst we need to determine some realistic distribu�
tions that we can use in our simulations� Therefore�
we repeatedly executed some parallel and sequential
programs� gathered run�time statistics� and analyzed
them�

We performed several experiments using the NAS
Benchmarks 	��� These benchmarks were used to de�
termine the types of run�time distributions that may
be typical for at least some jobs on some machines�
We needed to determine sample parameters for these
run�time distributions so that they could be repro�
duced by our simulator� While performing our tests�
we controlled the following environmental character�
istics� server location� network and server load� num�
ber of processors� amount of memory� and processor
speed� Table � summarizes the con�gurations of our
machines caesar and elvis upon which we ran our
experiments�

caesar elvis

Type SGI Challenge L Onyx
Proc Speed �MHz� �

 ��

Proc Type �MIPS� R��

 R��


� of Processors � �
Memory �Mbytes� 
� ���
Secondary Uni�ed

Cache � Mb � Mb

Table �� Con�guration of SGI machines caesar and
elvis� both running IRIX�	 v����

The jobs that we used throughout these experiments
were from two sources� NASA�s reference implement�
ation for some of the NAS Benchmarks� and our own

implementations of other NAS Benchmarks that met
the required criteria� Four of the experiments use some
version of the NAS Integer Sort �IS� Benchmark� im�
plemented either in parallel on four processors� or in
single processor mode� Two other experiments used
the NAS Embarrassingly Parallel �EP� Benchmark run
on a single processor� We now explain our experiments
and their results�

����� Integer Sort� Executed on Four Pro�

cessors

This experiment examined the run�time distribution of
a version of the NAS Integer Sort Benchmark executed
on four processors� We implemented the integer sort
using a counting sort 	�� pages �������� algorithm� We
used Silicon Graphic�s light weight process �thread�
support functions� including mfork��� to implement
our version of this benchmark�

We ran this sort across a heavily loaded network�
obtaining both the executable and the data from a �le
server that was also heavily loaded� When run on
caesar� the run�time distribution� for �

 executions�
appears Gaussian�� Figure � shows a histogram of this
distribution� When run on elvis� the run�time distri�
bution� again for �

 executions� appears exponential
and is shown in Figure �� We note that the origin
of the exponential distribution shown in Figure � is
translated to approximately ��
� That means that the
sort had to run for at least ��
 seconds before stopping�
The distribution that we see very closely matches an
exponential distribution with a mean of around 
��
�
translated ��
 seconds to the right� We expect that
many jobs would have a distribution similar to this�
because all jobs must run at least some amount of
time��

In these experiments� we also see that memory size�
and so� the need to swap to local disk� can have a
de�nite e�ect upon the run�time distribution of a job�
The integer sort on elvis completes� on average� �
�
sooner than the same job on caesar� We note that� in
this case� the amount of memory has more in�uence

�The form of the distributions were determined by carefully
selecting the bin size and then curve �tting� The authors are
familar with both visual and analytical tests for normality� but
analytical tests were not used given the strong visual similarity
of the frequency plots to that of a Normal curve� �The fact that
some sample point frequencies lie above and below the selected
Normal distribution is due to the number of samples being �nite�
Such phenomena would have appeared even if �		 data points
had been sampled from a known Normal run�time distribution�


�An exponential distribution is de�ned to start at 	�	� If
applied� without translation� in this case� that would mean there
is a strong possibility of near�zero run�times�



0

2

4

6

8

10

12

14

16

8.8 8.9 9 9.1 9.2 9.3 9.4

F
re

q
u
e
n
c
y

Run-time, seconds

Parallel Counting Sort on Caesar

100 Samples

Loaded network

Mean:  9.093

Sigma:  0.0983

"fcaesar.dat"

Figure �� Forked counting sort� caesar�
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Figure �� Forked counting sort� elvis�

on the run�time of the job than does the speed of the
processor� Of primary importance� however� is the ob�
servation indicating that the same job� running on two
di�erent machines� not only has di�erent mean run�
times� but the distribution of run�times is di�erent�
yielding a Gaussian�like distribution on one machine
and an exponential�like distribution on the other�

����� Integer Sort� Single Processor

This experiment is the same as that discussed in the
last section� with the exception of being run on a single
processor instead of being distributed across four pro�
cessors� Although a slightly di�erent C�� implement�
ation was used� we again based our program on the
counting sort�

When the integer sort was run on caesar and
elvis� the run�time distribution was not easily char�
acterized� however� it appears related to a Gaussian
distribution� Histograms of the distributions� sim�
ilar to that shown in Figure �� are possibly multi�
modal� which indicates that multiple distributions may
be present� While this experiment does not provide
us with de�nitive results� it does point to the fact that
run�time distributions can be quite complex� We sus�
pect that these conditions are related to changes in the
network and server loads�
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Figure �� Counting sort� caesar� single processor�

Once again� this set of experiments showed us that
additional memory can greatly enhance run�time per�
formance� The tests on elvis ran � times faster than
those run on caesar� which has the faster processors�
The tests also show that run�time distributions can be
very complex� and may be di�cult to reproduce in a
simulation� Although our simulations did not use such
complex distributions� they should be modeled in fu�
ture work�
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Figure �� Counting sort� elvis� single processor�

����� Embarrassingly Parallel NAS Bench�

mark

The next set of experiments that we describe com�
pared the run�time distributions of compute intens�
ive jobs run from local disk to those run across the
network from a �le server� The tests that we de�
scribe in this section were executed only on caesar be�
cause elvis did not have a su�ciently large local disk
available� We used the reference implementation 	���
from NASA� of the NAS Embarrassingly Parallel �EP�
Benchmark� This implementation uses the portable
Message Passing Interface �MPI� 	��� to parallelize the
code� The tests we ran� however� were compiled to be
executed on a single processor� � The EP Benchmark
was run �

 times for each test� See Figures � and 
�

��� Simulation Experiments

We now describe our simulation experiments that
are aimed at examining how well the mapping al�
gorithms performed when the jobs scheduled did not
execute for exactly the mean run�time� The matrices
that we refer to in the description below have rows in�
dexed by the job and columns indexed by the machine�

� Matrix Format� We used di�erent matrices contain�
ing jobs and machines of varying characteristics� Each
matrix contained mean run�times for each of �ve dif�
ferent jobs on each of ten di�erent machines� The av�
erage means of the corresponding columns and rows

�The MPI mechanism is still utilized in the EP Benchmark
when it is compiled for a single processor�
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Figure 
� epA� NAS Benchmark� �les obtained over a
lightly loaded network�

were the same for all matrices and the jobs themselves
were quite heterogeneous�

� Job Request Sets� In order to obtain di�erent results
for each matrix� we generated two random sequences
of ��
 job requests� which we will call ����� and
������ where each individual request was chosen ac�
cording to a uniform random distribution from among
�ve di�erent jobs� We also generated two more ran�



dom sets� this time of 


 job requests� calling them
����� and ������ We did this to look at perform�
ance variations between job request orderings� as well
as to examine any performance di�erences that might
occur because fewer or more jobs were requested�

� Job Request Format� We generated each of the 

jobs� for each request� at random� Thus� in these ex�
periments� the jobs were requested in random order�
This was done because the order of job request af�
fects the schedule� The Fast Greedy Algorithm maps
and schedules the jobs on machines in the order in
which they are submitted� The Greedy Algorithm
uses the order to break ties� We chose to execute
these randomly ordered requests both because they
more closely mimic a real environment where di�er�
ent jobs are submitted by di�erent users and because
we wished to examine whether these algorithms per�
formed better or worse when unsorted� as opposed to
sorted� requests were submitted�

� Run�time Generation for Simulations� We executed
each simulation �
 times� In each run� a di�erent
value was used to seed the random number generator
that was used to generate the simulated �actual� run�
time duration� The total time required to execute each
schedule was summed and the average was computed�
Multiple seeds were used to ensure that our results
were not skewed��

� Baseline Calculations� In addition to simulations
where we generated simulated run�times from particu�
lar distributions� we performed some baseline calcu�

lations� These baseline calculations provided results
that were� in e�ect� equivalent to running the simula�
tion where the run�time of a job on a given machine
was always exactly its expected run�time�

� Actual Run�time Distributions� When we generated
run�times that were di�erent from the mean predicted
run�times� we ran experiments for both Gaussian and
exponential distributions� Based upon our experi�
ments with the NAS IS and EP Benchmarks above�
we chose to implement a translated exponential dis�
tribution�

Again� based upon our earlier experiments described
in Section ���� we chose to use a truncated Gaussian
distribution in our simulation experiments to mimic
the Gamma distribution that best �t our data� We
chose to truncate left of the mean at � � ��

��� Results of Simulation Experiments
where Jobs Ran for Times Di�erent
from the Predicted Run�times

This set of experiments examined the performance
of intelligent mapping algorithms when job run�times

�This is a common method to reduce the in�uence of a single
random number generation sequence that may be biased�

di�ered from the expected run�times that were used to
develop the mappings� Using the distributions identi�
�ed in the previous experiments� we instantiated spe�
ci�c parameters in order to simulate some typical jobs�
We simulated jobs with both exponential and trun�
cated Gaussian run�time distributions� In this pa�
per we summarize results� individual results from ad�
ditional individual experiments� which are consistent
with the conclusions that we make in this paper� can
be found in Armstrong�s thesis 	���

The graphs in this section compare the �nal com�
pletion times of the jobs under the various mappings�
We use the label Baseline to mean that the value rep�
resented would be the completion time if all of the
jobs ran for exactly their predicted mean run�times�
In order to emphasize the di�erences between the val�
ues that we plot in the graph� we do not include the
OLB run�times� The OLB run�times� for the expo�
nential and Gaussian distribution simulations that we
discuss below� averaged around �
�


 seconds in all
cases shown� i�e�� �

 requests�

����� Exponential Distribution Experiments

The results of these experiments compare the perform�
ance of the various mapping algorithms when all jobs
have an exponential run�time distribution� We re�
call that the sample run�times from those experiments
closely �t a shifted exponential distribution with mean
of ��
�
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Figure �� Exponential run�time distribution results�
�

���



We now compare the time at which the last job �n�
ishes if executed according to each of the mappings�
assuming that a job is not started on a machine until
the last job completes� The �gures in this section show
both the expected completion time assuming determ�
inistic run�times as well as under the assumption that
the run�times are exponentially distributed� shifted to
the right such that its mean matches the expected run�
time�

Figure � shows these comparisons for some matrices
that we used in our simulations� This �gure shows
that the schedules built by the intelligent mapping
algorithms are still e�ective even though the actual
run�time of a given job on a given machine can di�er
greatly from its expected run�time�

����� Truncated Gaussian Experiments

We then performed additional simulations to exam�
ine the performance of the the intelligent mapping al�
gorithms when all jobs had approximately Gamma
run�time distributions� We determined from our ex�
periments that we could approximate such a distribu�
tion by truncating a Gaussian distribution to the left
of the mean at roughly �� �� Throughout this exper�
iment� the mean� �� was the expected run�time for the
individual job�machine pair� and �� was set to �

�
of �� Therefore� these experiments are useful in de�
termining whether� when the variance is very large for
all jobs� the greedy algorithms still performed much
better than both the LBA and OLB algorithms� No
negative run�times were generated in our experiments
because the truncation value was always positive�

The results in Figure � show that the schedules are
�nishing up to ��� later than in the previous exper�
iments� This not unexpected� as truncation will shift
the mean of the resulting distribution to the right� In
the next section we provide a theoretical discussion as
to why we would expect the times to be at least �
�
later� The results also show that the greedy algorithms
still perform better than the OLB and LBA algorithms
when job run�time distributions are truncated Gaus�
sian with very large variances� Our experiments� and
the theoretical explanation below� imply that it may
be worthwhile to update the mapping as the jobs are
being executed� to minimize the e�ect of the large job
variances�
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����� Theoretical Explanation for Longer

Run�times shown in Gaussian Experi�

ments

To theoretically predict the new mean of the truncated
distribution described in the last section� we can use
simple Gaussian statistics 	��� Without loss of general�
ity� our explanation uses a standard Gaussian distribu�
tion with a mean of 
 and a standard deviation of �� If
A�z�� is the area under the distribution from the mean�
z � 
� to z � z�� then it can be easily shown that the
new mean� �new� for our truncated distribution is

�new � A��
�
���A���

�

�
���

Using this� we see that the new mean should be �new �
��
��

Unfortunately� the truncation of the Gaussian dis�
tribution only accounts for a �
� increase in the mean�
Therefore� this explanation alone leaves some �� un�
accounted for� The remaining �� is due to two factors�
The �rst can be traced to the fact that we are using a
truncated Gaussian instead of a Gamma distribution�
The second is the fact that the expected value of the
maximum of several Gaussian distributions is not the
maximum of the expected values� The application of
this well�known probability result to quality of service
metrics is documented elsewhere 	���



����� Comparison of the Two Greedy Al�

gorithms

We note that in our results� presented both here and
in Armstrong�s thesis� the Greedy and Fast Greedy
algorithms appeared to perform similarly� Over all of
our experiments we only saw the Greedy Algorithm
performing up to ��� better than the Fast Greedy Al�
gorithm� Other work has suggested that the improve�
ment should be much higher� However� the other work�
to our knowledge� was based upon presenting sorted
requests to these mapping algorithms� The theoretical
explanation for these results is beyond the scope of this
paper and is discussed in another paper 	���

� Related Work
To our knowledge� no one else has studied the

performance of intelligent heterogeneous mapping
algorithms when the run�times of jobs are non�
deterministic� by using the distributions of run�times
for actual programs determined under di�erent re�
source loadings�

Ibarra and Kim 	�� were the �rst to study the
performance of the algorithms upon which we con�
centrated� Their analytical study centered around
determining the worst�case performance of the al�
gorithms� Weissman 	��� used simulation to study
interference�based policies� that is� policies that take
into account the fact that as you increase the load on
any shared resource� the rate of execution of other jobs
decreases� Our policies� and simulations� assumed that
the jobs were executed on a �rst�come� �rst�served
basis� Although we did not study their performance
here� genetic algorithms have been proposed as a good
way to schedule tasks on heterogeneous resources� par�
ticularly when communication or synchronization is
needed between tasks 	���� 	���� Many systems have
followed the lead of SmartNet 	
� in implementing in�
telligent schedulers� such as those we describe here� in
their resource management systems 	���� 	��� 	�
��

� Summary
In this paper� we experimented with several applica�

tions on resources with di�ering loads and �tted their
run�times to distributions� We then used these dis�
tributions to determine via simulation whether� when
the run�times are non�deterministic� it is still bene��
cial to use intelligent algorithms that make use of the
expected run�times to compute a mapping� We found
that it continues to be bene�cial even when the expec�
ted run�time distributions have large variances� As
the distributions in our simulations were derived from
the execution of actual programs� our distributions are
realistic� However� there are additional distributions

that are also realistic that we have not yet examined�
We intend to pursue these in future work�
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